Personalized preservation extraperitoneoscopic radical prostatectomy in high-risk prostate cancer patients
DOI:
https://doi.org/10.15574/PS.2025.3(88).8794Keywords:
radical prostatectomy, personalized preservation, prostate cancerAbstract
Radical prostatectomy (RP) remains one of the most common treatment approaches for localized prostate cancer (PCa). In recent years, it has been increasingly utilized in cases of high-risk prostate cancer (HR-PCa), where achieving an optimal balance between oncological control and functional outcomes is essential.
Aim - to describe and assess the safety and feasibility of personalized preservation extraperitoneoscopic radical prostatectomy (PP-ERP) in patients with HR-PCa.
Materials and methods. PP-ERP was performed in 21 well-informed HR-PCa patients. All patients underwent meticulous preoperative planning based on multiparametric magnetic resonance imaging with a picture quality score ≥4, utilizing 3D modeling. Imaging was interpreted by an experienced, sub-specialized radiologist. The PRECE nomogram was also utilized for surgical planning and for shared decision-making with the patient regarding the extent of tissue preservation. Urinary continence (UC), erectile function (EF), and biochemical recurrence (BCR) were assessed during the follow-up period.
Results. Using the described approach, extraprostatic extension (EPE) was accurately identified preoperatively in 95.2% of cases. At 12 months postoperatively, UC and EF were preserved in 95.2% and 61.9% of patients, respectively, according to the established criteria. Positive surgical margins were observed in 23.8% of cases, and BCR occurred in 19% at 24 months.
Conclusions. PP-ERP with precise surgical planning appears to be a safe and feasible approach for selected HR-PCa patients, offering encouraging functional and oncological outcomes.
This study was conducted in accordance with the principles of the Declaration of Helsinki. The study protocol was approved by the Local Ethics Committee of the institution. The informed consent was obtained from all patients.
The author declares no conflict of interest.
References
Asimakopoulos AD, Corona Montes VE, Gaston R. (2012). Robot-Assisted Laparoscopic Radical Prostatectomy with Intrafascial Dissection of the Neurovascular Bundles and Preservation of the Pubovesical Complex: A Step-By-Step Description of the Technique. Journal of Endourology. 26: 1578-1585. https://doi.org/10.1089/end.2012.0405; PMid:23072396
Becker AS, Giganti F, Purysko AS, Fainberg J, Vargas HA, Woo S. (2023). Taking PI-QUAL beyond the prostate: Towards a standardized radiological image quality score (RI-QUAL). European Journal of Radiology. 165: 110955. https://doi.org/10.1016/j.ejrad.2023.110955; PMid:37421773 PMCid:PMC10404469
Bhat KRS, Moschovas MC, Onol FF, Rogers T, Reddy SS, Corder C et al. (2021). Evidence-based evolution of our robot-assisted laparoscopic prostatectomy (RALP) technique through 13,000 cases. J Robotic Surg. 15: 651-660. https://doi.org/10.1007/s11701-020-01157-5; PMid:33040249
Covas Moschovas M, Bhat S, Onol FF, Rogers T, Roof S, Mazzone E et al. (2020). Modified Apical Dissection and Lateral Prostatic Fascia Preservation Improves Early Postoperative Functional Recovery in Robotic-assisted Laparoscopic Radical Prostatectomy: Results from a Propensity Score-matched Analysis. European Urology. 78: 875-884. https://doi.org/10.1016/j.eururo.2020.05.041; PMid:32593529
De Carvalho PA, Barbosa JABA, Guglielmetti GB, Cordeiro MD, Rocco B, Nahas WC et al. (2020). Retrograde Release of the Neurovascular Bundle with Preservation of Dorsal Venous Complex During Robot-assisted Radical Prostatectomy: Optimizing Functional Outcomes. European Urology. 77: 628-635. https://doi.org/10.1016/j.eururo.2018.07.003; PMid:30041833
Falagario UG, Knipper S, Pellegrino F, Martini A, Akre O, Egevad L et al. (2024). Prostate Cancer-specific and All-cause Mortality After Robot-assisted Radical Prostatectomy: 20 Years' Report from the European Association of Urology Robotic Urology Section Scientific Working Group. European Urology Oncology. 7: 705-712. https://doi.org/10.1016/j.euo.2023.08.005; PMid:37661459
Ficarra V, Novara G, Ahlering TE, Costello A, Eastham JA, Graefen M et al. (2012). Systematic Review and Meta-analysis of Studies Reporting Potency Rates After Robot-assisted Radical Prostatectomy. European Urology. 62: 418-430. https://doi.org/10.1016/j.eururo.2012.05.046; PMid:22749850
Furrer MA, Sathianathen N, Gahl B, Wuethrich PY, Giannarini G et al. (2023). Functional Impact of Neuro-Vascular Bundle Preservation in High Risk Prostate Cancer without Compromising Oncological Outcomes: A Propensity-Modelled Analysis. Cancers. 15: 5839. https://doi.org/10.3390/cancers15245839; PMid:38136384 PMCid:PMC10741934
Galfano A, Ascione A, Grimaldi S, Petralia G, Strada E, Bocciardi AM. (2010). A New Anatomic Approach for Robot-Assisted Laparoscopic Prostatectomy: A Feasibility Study for Completely Intrafascial Surgery. European Urology. 58: 457-461. https://doi.org/10.1016/j.eururo.2010.06.008; PMid:20566236
Giganti F, Allen C, Emberton M, Moore CM, Kasivisvanathan V. (2020). Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial. European Urology Oncology. 3: 615-619. https://doi.org/10.1016/j.euo.2020.06.007; PMid:32646850
Hamamoto S, AbdelRazek M, Naiki T, Taguchi K, Etani T, Iwatsuki S et al. (2021). LigaSure versus the standard technique (Hem-o-lok clips) for robot-assisted radical prostatectomy: a propensity score-matched study. J Robotic Surg. 15: 869-875. https://doi.org/10.1007/s11701-020-01180-6; PMid:33426579
Ippoliti S, Colalillo G, Egbury G, Orecchia L, Fletcher P, Piechaud T et al. (2023). Continence-Sparing Techniques in Radical Prostatectomy: A Systematic Review of Randomized Controlled Trials. Journal of Endourology. 37: 1088-1104. https://doi.org/10.1089/end.2023.0188; PMid:37597197
Kessler TM, Burkhard FC, Studer UE. (2007). Nerve-Sparing Open Radical Retropubic Prostatectomy. European Urology. 51: 90-97. https://doi.org/10.1016/j.eururo.2006.10.013; PMid:17074431
Kowalczyk KJ, Huang AC, Hevelone ND, Lipsitz SR, Yu H, Ulmer WD et al. (2011). Stepwise Approach for Nerve Sparing Without Countertraction During Robot-Assisted Radical Prostatectomy: Technique and Outcomes. European Urology. 60: 536-547. https://doi.org/10.1016/j.eururo.2011.05.001; PMid:21620561
Lin Y, Yilmaz EC, Belue MJ, Turkbey B. (2023). Prostate MRI and image Quality: It is time to take stock. European Journal of Radiology. 161: 110757. https://doi.org/10.1016/j.ejrad.2023.110757; PMid:36870241 PMCid:PMC10493032
Mandel A, Choudhary M, Tillu N, Maheshwari A, Kolanukuduru K et al. (2025). Hood Technique for Radical Prostatectomy. Journal of Endourology. 39: S35-S38. https://doi.org/10.1089/end.2024.0303; PMid:40100831
Mandel A, Parekh S, Choudhary M, Morizane S, Kacagan C, Tillu N et al. (2025). Analysis of the Current Surgical Anatomical Knowledge of Radical Prostatectomy: An Updated Review. European Urology. 20:S0302-2838(25)00344-6. Epub ahead of print. https://doi.org/10.1016/j.eururo.2025.06.002; PMid:40544124
Martini A, Cumarasamy S, Haines KG, Tewari AK. (2019). An updated approach to incremental nerve sparing for robot‐assisted radical prostatectomy. BJU International. 124: 103-108. https://doi.org/10.1111/bju.14655; PMid:30575261
Martini A, Falagario UG, Villers A, Dell'Oglio P, Mazzone E, Autorino R et al. (2020). Contemporary Techniques of Prostate Dissection for Robot-assisted Prostatectomy. European Urology. 78: 583-591. https://doi.org/10.1016/j.eururo.2020.07.017; PMid:32747200
Martini A, Gandaglia G, Karnes RJ, Zaffuto E, Bianchi M, Gontero P et al. (2019). Defining the Most Informative Intermediate Clinical Endpoints for Predicting Overall Survival in Patients Treated with Radical Prostatectomy for High-risk Prostate Cancer. European Urology Oncology. 2: 456-463. https://doi.org/10.1016/j.euo.2018.12.002; PMid:31277783
Mattei A, Naspro R, Annino F, Burke D, Guida R, Gaston R. (2007). Tension and Energy-Free Robotic-Assisted Laparoscopic Radical Prostatectomy with Interfascial Dissection of the Neurovascular Bundles. European Urology. 52: 687-695. https://doi.org/10.1016/j.eururo.2007.05.029; PMid:17587488
Menon M, Shrivastava A, Bhandari M, Satyanarayana R, Siva S, Agarwal PK. (2009). Vattikuti Institute Prostatectomy: Technical Modifications in 2009. European Urology. 56: 89-96. https://doi.org/10.1016/j.eururo.2009.04.032; PMid:19403236
Moris L, Gandaglia G, Vilaseca A, Van Den Broeck T, Briers E, De Santis M et al. (2022). Evaluation of Oncological Outcomes and Data Quality in Studies Assessing Nerve-sparing Versus Non-Nerve-sparing Radical Prostatectomy in Nonmetastatic Prostate Cancer: A Systematic Review. European Urology Focus. 8: 690-700. https://doi.org/10.1016/j.euf.2021.05.009; PMid:34147405
Moschovas MC, Jaber A, Saikali S, Sandri M, Bhat S, Rogers T et al. (2024). Impacts on functional and oncological outcomes of Robotic-assisted Radical Prostatectomy 10 years after the US Preventive Service Taskforce recommendations against PSA screening. Int. braz j urol. 50: 65-79. https://doi.org/10.1590/s1677-5538.ibju.2023.0530; PMid:38166224 PMCid:PMC10947651
Moschovas MC, Patel V. (2022). Neurovascular bundle preservation in robotic-assisted radical prostatectomy: How I do it after 15.000 cases. Int. braz j urol. 48: 212-219. https://doi.org/10.1590/s1677-5538.ibju.2022.99.04; PMid:34786925 PMCid:PMC8932039
Myers RP. (2002). Detrusor apron, associated vascular plexus, and avascular plane: relevance to radical retropubic prostatectomy - anatomic and surgical commentary. Urology. 59: 472-479. https://doi.org/10.1016/S0090-4295(02)01500-5; PMid:11927293
Nakonechnyi YA. (2025). Intracorporeal square-to-slip knot technique for vesicourethral anastomosis with single-layer anatomical reconstruction and anterior urethral sphincter preservation. Paediatric Surgery (Ukraine). 1(86): 73-78. https://doi.org/10.15574/PS.2025.1(86).7378; PMid:41374753
Nakonechnyi YA, Mytsyk YuO, Borzhievskyi ATs. (2024). PCA3 score prognostic value for identifying postoperative ISUP grades 4-5 in localized peripheral zone prostate cancer with a posterior tumor growth dominant pattern. Paediatric Surgery (Ukraine). 4(85): 65-70. https://doi.org/10.15574/PS.2024.4(85).6570
Oyama S, Nonaka T, Matsumoto K, Taniguchi D, Hashimoto Y, Obata T et al. (2021). A new method using a vessel-sealing system provides coagulation effects to various types of bleeding with less thermal damage. Surg Endosc. 35: 1453-1464. https://doi.org/10.1007/s00464-020-08043-z; PMid:33063194 PMCid:PMC7886768
Patel VR, Sandri M, Grasso AAC, De Lorenzis E, Palmisano F, Albo G et al. (2018). A novel tool for predicting extracapsular extension during graded partial nerve sparing in radical prostatectomy. BJU International. 121: 373-382. https://doi.org/10.1111/bju.14026; PMid:28941058
Patel VR, Schatloff O, Chauhan S, Sivaraman A, Valero R, Coelho RF et al. (2012). The Role of the Prostatic Vasculature as a Landmark for Nerve Sparing During Robot-Assisted Radical Prostatectomy. European Urology. 61: 571-576. https://doi.org/10.1016/j.eururo.2011.12.047; PMid:22225830
Pellegrino F, Falagario UG, Knipper S, Martini A, Akre O, Egevad L et al. (2024). Assessing the Impact of Positive Surgical Margins on Mortality in Patients Who Underwent Robotic Radical Prostatectomy: 20 Years' Report from the EAU Robotic Urology Section Scientific Working Group. European Urology Oncology. 7: 888-896. https://doi.org/10.1016/j.euo.2023.11.021; PMid:38155061
Ponsiglione A, Stanzione A, Califano G, De Giorgi M, Collà Ruvolo C, D'Iglio I et al. (2023). MR image quality in local staging of prostate cancer: Role of PI-QUAL in the detection of extraprostatic extension. European Journal of Radiology. 166: 110973. https://doi.org/10.1016/j.ejrad.2023.110973; PMid:37453275
Schlomm T, Heinzer H, Steuber T, Salomon G, Engel O, Michl U et al. (2011). Full Functional-Length Urethral Sphincter Preservation During Radical Prostatectomy. European Urology. 60: 320-329. https://doi.org/10.1016/j.eururo.2011.02.040; PMid:21458913
Shim JS, Tae JH, Noh TI, Kang SH, Cheon J, Lee JG et al. (2022). Toggling Technique Allows Retrograde Early Release to Facilitate Neurovascular Bundle Sparing During Robot-Assisted Radical Prostatectomy: A Propensity Score-Matching Study. J Korean Med Sci. 37: e6. https://doi.org/10.3346/jkms.2022.37.e6; PMid:34981681 PMCid:PMC8723890
Shore N, Hafron J, Saltzstein D, Brown G, Belkoff L, Aggarwal P et al. (2024). Apalutamide for High-Risk Localized Prostate Cancer Following Radical Prostatectomy (Apa-RP). J Urol. 212: 682-691. https://doi.org/10.1097/JU.0000000000004163; PMid:39088398 PMCid:PMC12721603
Sood A, Grauer R, Jeong W, Butaney M, Mukkamala A, Borchert A et al. (2022). Evaluating post radical prostatectomy mechanisms of early continence. The Prostate. 82: 1186-1195. https://doi.org/10.1002/pros.24372; PMCid:PMC8887817
Spirito L, Sciorio C, Romano L, Di Girolamo A, Ruffo A, Romeo G et al. (2025). Impact of Nerve-Sparing Techniques on Prostate-Specific Antigen Persistence Following Robot-Assisted Radical Prostatectomy: A Multivariable Analysis of Clinical and Pathological Predictors. Diagnostics. 15: 987. https://doi.org/10.3390/diagnostics15080987; PMid:40310337 PMCid:PMC12025793
Srivastava A, Grover S, Sooriakumaran P, Tan G, Takenaka A, Tewari AK. (2011). Neuroanatomic basis for traction-free preservation of the neural hammock during athermal robotic radical prostatectomy. Current Opinion in Urology. 21: 49-59. https://doi.org/10.1097/MOU.0b013e32834120e9; PMid:21099688
Stolzenburg J, McNeill A, Liatsikos EN. (2008). Nerve‐sparing endoscopic extraperitoneal radical prostatectomy. BJU International. 101: 909-928. https://doi.org/10.1111/j.1464-410X.2008.07544.x; PMid:18321324
Takenaka A, Leung RA, Fujisawa M, Tewari AK. (2006). Anatomy of autonomic nerve component in the male pelvis: the new concept from a perspective for robotic nerve sparing radical prostatectomy. World J Urol. 24: 136-143. https://doi.org/10.1007/s00345-006-0102-2; PMid:16758247
Tewari AK, Srivastava A, Huang MW, Robinson BD, Shevchuk MM, Durand M et al. (2011). Anatomical grades of nerve sparing: a risk‐stratified approach to neural‐hammock sparing during robot‐assisted radical prostatectomy (RARP). BJU International. 108: 984-992. https://doi.org/10.1111/j.1464-410X.2011.10565.x; PMid:21917101
Wagaskar VG, Mittal A, Sobotka S, Ratnani P, Lantz A, Falagario UG et al. (2021). Hood Technique for Robotic Radical Prostatectomy - Preserving Periurethral Anatomical Structures in the Space of Retzius and Sparing the Pouch of Douglas, Enabling Early Return of Continence Without Compromising Surgical Margin Rates. European Urology. 80: 213-221. https://doi.org/10.1016/j.eururo.2020.09.044; PMid:33067016
Wibmer A, Vargas HA, Donahue TF, Zheng J, Moskowitz C, Eastham J et al. (2015). Diagnosis of Extracapsular Extension of Prostate Cancer on Prostate MRI: Impact of Second-Opinion Readings by Subspecialized Genitourinary Oncologic Radiologists. American Journal of Roentgenology. 205: W73-W78. https://doi.org/10.2214/AJR.14.13600; PMid:26102421
Yu Y, Reiter RE, Zhang M. (2025). Surgical techniques for enhancing postoperative urinary continence in robot-assisted radical prostatectomy: a comprehensive review. International Journal of Surgery. 111: 3931-3941. https://doi.org/10.1097/JS9.0000000000002414; PMid:40358638 PMCid:PMC12165507
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Paediatric Surgery (Ukraine)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The policy of the Journal “PAEDIATRIC SURGERY. UKRAINE” is compatible with the vast majority of funders' of open access and self-archiving policies. The journal provides immediate open access route being convinced that everyone – not only scientists - can benefit from research results, and publishes articles exclusively under open access distribution, with a Creative Commons Attribution-Noncommercial 4.0 international license(СС BY-NC).
Authors transfer the copyright to the Journal “PAEDIATRIC SURGERY.UKRAINE” when the manuscript is accepted for publication. Authors declare that this manuscript has not been published nor is under simultaneous consideration for publication elsewhere. After publication, the articles become freely available on-line to the public.
Readers have the right to use, distribute, and reproduce articles in any medium, provided the articles and the journal are properly cited.
The use of published materials for commercial purposes is strongly prohibited.