In vivo experimental models in scientific research on current issues of Crohn's disease and other inflammatory bowel diseases
DOI:
https://doi.org/10.15574/PS.2025.3(88).135148Keywords:
Crohn's disease, inflammatory bowel disease, In Vivo experimental models, experimental animalsAbstract
The relevance of scientific research into the pathophysiology, diagnostics, and treatment of Crohn's disease (CD) and other inflammatory bowel diseases (IBD) is due to the increase in morbidity in all age groups and geographical regions. In vivo experimental studies are an integral part of multi-vector scientific research.
Aim - determination the role of species characteristics of biological objects, characterisation of the methods of induction of the pathological process in experimental reproduction and research of topical issues of CD and other IBD.
Based on the analysis of professional literature sources, the advantages that determine and disadvantages that limit the use of biological species in experimental studies are analyzed and presented. Methods of modeling diseases, induction substrates and pathophysiological changes in the experimental inflammatory process of the intestine are considered. Ethical norms that limit and regulate the use of representatives of biological species in experimental studies in vivo are highlighted. The features of experimental biological objects that contribute to the spontaneous onset of the disease, induction and development of morphological changes, disruption of the integrity and focal destruction of the epithelial intestinal barrier, local pathological immune changes, expression of pro-inflammatory cytokines, quantitative and qualitative changes in the microbiome are determined. Practical results of scientific research using each biological species are presented. The relevance of using biological objects in experimental studies of current issues of CD, other IBD forms is argued based on compliance with ethical standards, the possibility of simultaneous research of several problems in the conditions of one model, proven economic efficiency and compliance with the principles of evidence-based medicine. The need for further search for the optimal biological species and method of induction of experimental intestinal inflammation in accordance with the form of the disease and the defined research tasks is determined.
The authors declare that there is no conflict of interest.
References
Arias-Jayo N, Alonso-Saez L, Ramirez-Garcia A, Pardo MA. (2018). Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota. Zebrafish. 15(2): 96-106. Epub 2017 Dec 20. https://doi.org/10.1089/zeb.2017.1460; PMid:29261035
Bacon RL, Hodo CL, Wu J, Welch S, Nickodem C, Vinasco J et al. (2024, Nov 21). Diversity of Campylobacter spp. circulating in a rhesus macaque (Macaca mulatta) breeding colony using culture and molecular methods. mSphere. 9(11): e0056024. Epub 2024 Oct 23. https://doi.org/10.1128/msphere.00560-24; PMid:39440965 PMCid:PMC11580467
Barbosa JA, Rodrigues LA, Columbus DA, Aguirre JCP, Harding JCS et al. (2021, Aug 24). Experimental infectious challenge in pigs leads to elevated fecal calprotectin levels following colitis, but not enteritis. Porcine Health Manag. 7(1): 48. https://doi.org/10.1186/s40813-021-00228-9; PMid:34429170 PMCid:PMC8383374
Bates JM, Akerlund J, Mittge E, Guillemin K. (2007, Dec 13). Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2(6): 371-382. https://doi.org/10.1016/j.chom.2007.10.010; PMid:18078689 PMCid:PMC2730374
Baydi Z, Limami Y, Khalki L, Zaid N, Naya A, Mtairag EM et al. (2021, Dec 13). An Update of Research Animal Models of Inflammatory Bowel Disease. ScientificWorldJournal. 2021: 7479540. https://doi.org/10.1155/2021/7479540; PMid:34938152 PMCid:PMC8687830
Beard P. (2011). Biomedical photoacoustic imaging. Interface Focus. 1(4): 602-631. Epub 2011 Jun 22. https://doi.org/10.1098/rsfs.2011.0028; PMid:22866233 PMCid:PMC3262268
Bilash SM, Pronina OM, Ksyonz IV, Koptev MM, Oliinichenko YaO, Kononov BS (2024). Analysis of early morphological and functional perivulnar changes in the mucosa of the cecum after suturing with different surgical threads. Paediatric Surgery (Ukraine). 1(82): 43-49. https://doi.org/10.15574/PS.2024.82.43
Böhringer AC, Deters L, Windfelder AG, Merzendorfer H. (2023). Dextran sulfate sodium and uracil induce inflammatory effects and disrupt the chitinous peritrophic matrix in the midgut of Tribolium castaneum. Insect Biochem Mol Biol. 163: 104029. Epub 2023 Oct 29. https://doi.org/10.1016/j.ibmb.2023.104029; PMid:37907139
Brugman S, Nieuwenhuis EES. (2017). Oxazolone-Induced Intestinal Inflammation in Adult Zebrafish. Methods Mol Biol. 1559: 311-318. https://doi.org/10.1007/978-1-4939-6786-5_21; PMid:28063053
Burdzinska A, Galanty M, Więcek S, Dabrowski FA, Lotfy A, Sadkowski T. (2022). The Intersection of Human and Veterinary Medicine-A Possible Direction towards the Improvement of Cell Therapy Protocols in the Treatment of Perianal Fistulas. Int J Mol Sci. 23(22): 13917. https://doi.org/10.3390/ijms232213917; PMid:36430390 PMCid:PMC9696944
Chen H, Lei P, Ji H, Ma J, Fang Y, Yu H et al. (2023, Sep 15). Escherichia coli Nissle 1917 ghosts alleviate inflammatory bowel disease in zebrafish. Life Sci. 329: 121956. Epub 2023 Jul 19. https://doi.org/10.1016/j.lfs.2023.121956; PMid:37473802
Clua-Ferré L, Suau R, Vañó-Segarra I, Ginés I, Serena C, Manyé J. (2024). Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med. 14(11): e70075. https://doi.org/10.1002/ctm2.70075; PMid:39488745 PMCid:PMC11531661
Cocchiaro JL, Rawls JF. (2013). Microgavage of zebrafish larvae. J Vis Exp. (72): e4434. https://doi.org/10.3791/4434; PMid:23463135 PMCid:PMC3605733
Depoortere I, Thijs T, Assche GV, Keith JC, Peeters TL. (2000). Dose-Dependent Effects of Recombinant Human Interleukin-11 on Contractile Properties in Rabbit 2,4,6-Trinitrobenzene Sulfonic Acid. The Journal of Pharmacology and Experimental Therapeutics. 294(3): 983-990. https://doi.org/10.1016/S0022-3565(24)39162-1; PMid:10945850
Diaz OEM, Morales RA, Das S et al. (2019). Experimental models of intestinal inflammation: lessons from mouse and zebrafish. In: Hedin CR, John D, D'Amato M, eds. Molecular Genetics of Inflammatory Bowel Diseases. Switzerland: Springer International Publishing: 47-78. https://doi.org/10.1007/978-3-030-28703-0_3; PMCid:PMC6796476
Dillman JR et al. (2024). MRI and Blood-based Biomarkers Are Associated With Surgery in Children and Adults With Ileal Crohn's Disease, Inflammatory Bowel Diseases. 30(11): 2181-2190. https://doi.org/10.1093/ibd/izae101; PMid:38738296 PMCid:PMC12102486
Dillman JR, Stidham RW, Higgins PD, Moons DS, Johnson LA, Rubin JM. (2013). US elastography-derived shear wave velocity helps distinguish acutely inflamed from fibrotic bowel in a Crohn disease animal model. Radiology. 267(3): 757-766. Epub 2013 Feb 11. https://doi.org/10.1148/radiol.13121775; PMid:23401585 PMCid:PMC10341577
D'Isa R. (2025). The first rodent behavioral study (1822) and the diffusion of human-bred albino rats and mice in the 19th century. Front Psychol. 15: 1532975. https://doi.org/10.3389/fpsyg.2024.1532975; PMid:39963185 PMCid:PMC11831927
Dönder Y, Arikan TB, Baykan M, Akyüz M, Öz AB. (2018). Effects of quercitrin on bacterial translocation in a rat model of experimental colitis. Asian J Surg. 41(6): 543-550. Epub 2018 Jan 20. https://doi.org/10.1016/j.asjsur.2017.12.002; PMid:29371051
Dryden GW, Boland E, Yajnik V, Williams S. (2017). Comparison of stromal vascular fraction with or without a novel bioscaffold to fibrin glue in a porcine model of mechanically induced anorectal fistula. Inflamm Bowel Dis. 23: 1962-1971. https://doi.org/10.1097/MIB.0000000000001254; PMid:28945635
Dubinina VO, Ksonz IV, Bilash SM, Abyzova LV, Bilanov OS, Ksonz VI. (2023). Axiological dimensions of medical deontology in pediatric surgery. Paediatric Surgery (Ukraine). 4(81): 108-113. https://doi.org/10.15574/PS.2023.81.108
Ferrer L, Kimbrel EA, Lam A, Falk EB, Zewe C, Juopperi T et al. (2016). Treatment of perianal fistulas with human embryonic stem cell-derived mesenchymal stem cells: a canine model of human fistulizing Crohn's disease. Regen Med. 11(1): 33-43. Epub 2015 Sep 21. https://doi.org/10.2217/rme.15.69; PMid:26387424
Flacs M, Collard M, Doblas S, Zappa M, Cazals-Hatem D, Maggiori L et al. (2020). Preclinical model of perianal fistulizing Crohn's disease. Inflamm Bowel Dis. 26: 687-696. https://doi.org/10.1093/ibd/izz288; PMid:31774918
Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. (2020). The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol. 22(3): e13152. Epub 2020 Jan 7. https://doi.org/10.1111/cmi.13152; PMid:31872937 PMCid:PMC7015812
Gancarcikova S, Lauko S, Hrckova G, Andrejcakova Z, Hajduckova V, Madar M et al. (2020). Innovative Animal Model of DSS-Induced Ulcerative Colitis in Pseudo Germ-Free Mice. Cells. 9(12): 2571. https://doi.org/10.3390/cells9122571; PMid:33271873 PMCid:PMC7761014
Guo Y, Chen X, Gong P, Li G, Yao W, Yang W. (2023). The Gut-Organ-Axis Concept: Advances the Application of Gut-on-Chip Technology. Int J Mol Sci. 24(4): 4089. https://doi.org/10.3390/ijms24044089; PMid:36835499 PMCid:PMC9962350
Hanyang L, Xuanzhe L, Xuyang C, Yujia Q, Jiarong F et al. (2017). Application of Zebrafish Models in Inflammatory Bowel Disease. Front Immunol. 8: 501. https://doi.org/10.3389/fimmu.2017.00501; PMid:28515725 PMCid:PMC5413514
Harnish JM, Link N, Yamamoto S. (2021). Drosophila as a Model for Infectious Diseases. Int J Mol Sci. 22(5): 2724. https://doi.org/10.3390/ijms22052724; PMid:33800390 PMCid:PMC7962867
Hermanson JW, De Lahunta A. (2020). Miller and Evans' Anatomy of the Dog. American Veterinary Medical Association; Schaumburg, IL, USA. URL: https://books.google.com.ua/books/about/Miller_and_Evans_Anatomy_of_the_Dog_E_Bo.html?id=WQ6BDwAAQBAJ&redir_esc=y.
Hernandez J, Rouillé E, Chocteau F, Allard M, Haurogné K, Lezin F et al. (2021). Nonhypoalbuminemic Inflammatory Bowel Disease in Dogs as Disease Model. Inflamm Bowel Dis. 27(12): 1975-1985. https://doi.org/10.1093/ibd/izab064; PMid:33783501
Hiratsuka T, Inomata M. (2022). A novel animal model of colonic stenosis to aid the development of new stents for colon strictures. Surg Endosc. 36(5): 3152-3159. Epub 2021 Jun 22. https://doi.org/10.1007/s00464-021-08618-4; PMid:34159466
Hoffman AM, Dow SW. (2016). Concise Review: Stem Cell Trials Using Companion Animal Disease Models. Stem Cells. 34(7): 1709-1729. Epub 2016 May 3. https://doi.org/10.1002/stem.2377; PMid:27066769
Hong Y, Zhao J, Chen YR, Huang ZH, Hou LD et al. (2022). Spinal anesthesia alleviates dextran sodium sulfate-induced colitis by modulating the gut microbiota. World J Gastroenterol. 28(12): 1239-1256. https://doi.org/10.3748/wjg.v28.i12.1239; PMid:35431512 PMCid:PMC8968491
Huang X, Zeng LR, Chen FS, Zhu JP, Zhu MH. (2018). Trichuris suis ova therapy in inflammatory bowel disease: A meta-analysis. Medicine (Baltimore). 97(34): e12087. https://doi.org/10.1097/MD.0000000000012087; PMid:30142867 PMCid:PMC6113037
Iliopoulou L, Kollias G. (2022). Harnessing murine models of Crohn's disease ileitis to advance concepts of pathophysiology and treatment. Mucosal Immunol. 15(1): 10-26. Epub 2021 Jul 27. https://doi.org/10.1038/s41385-021-00433-3; PMid:34316007
Kachanov D, Elistratov L, Guseinov H, Balaeva K, Popova N. (2023). A comparative review of the use of danio rerio (zebrafish) as a model object in preclinical studies. Georgian Med News. (337): 21-24. PMID: 37354667.
Kanthaswamy S, Elfenbein HA, Ardeshir A, Ng J, Hyde D et al. (2014). Familial aggregation of chronic diarrhea disease (CDD) in rhesus macaques (Macaca mulatta). Am J Primatol. 76(3): 262-270. Epub 2013 Nov 1. https://doi.org/10.1002/ajp.22230; PMid:24532180
Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H et al. (2008). XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 134(5): 743-56. https://doi.org/10.1016/j.cell.2008.07.021; PMid:18775308 PMCid:PMC2586148
Kim JY, Le TAN, Lee SY, Song DG, Hong SC, Cha KH et al. (2019, Aug 21). 3,3'-Diindolylmethane Improves Intestinal Permeability Dysfunction in Cultured Human Intestinal Cells and the Model Animal Caenorhabditis elegans. J Agric Food Chem. 67(33): 9277-9285. Epub 2019 Aug 6. https://doi.org/10.1021/acs.jafc.9b03039; PMid:31353906
Kirsner JB. (2001, Apr). Historical origins of current IBD concepts. World J Gastroenterol. 7(2): 175-184. https://doi.org/10.3748/wjg.v7.i2.175; PMid:11819757 PMCid:PMC4723519
Kol A, Arzi B, Athanasiou KA, Farmer DL, Nolta JA, Rebhun RB et al. (2015). Companion animals: Translational scientist's new best friends. Sci Transl Med. 7(308): 308ps21. https://doi.org/10.1126/scitranslmed.aaa9116; PMid:26446953 PMCid:PMC4806851
Kriaa A, Mariaule V, De Rudder C, Jablaoui A, Sokol H, Wilmes P et al. (2024). From animal models to gut-on-chip: the challenging journey to capture inter-individual variability in chronic digestive disorders. Gut Microbes. 16(1): 2333434. Epub 2024 Mar 27. https://doi.org/10.1080/19490976.2024.2333434; PMid:38536705 PMCid:PMC10978023
Lei H, Johnson LA, Eaton KA, Liu S, Ni J, Wang X et al. (2019). Characterizing intestinal strictures of Crohn's disease in vivo by endoscopic photoacoustic imaging. Biomed Opt Express. 10(5): 2542-2555. https://doi.org/10.1364/BOE.10.002542; PMid:31143502 PMCid:PMC6524586
Leonardi I, Nicholls F, Atrott K, Cee A, Tewes B, Greinwald R et al. (2015). Oral administration of dextran sodium sulphate induces a caecum-localized colitis in rabbits. Int J Exp Pathol. 96(3): 151-162. Epub 2015 Feb 26. https://doi.org/10.1111/iep.12117; PMid:25716348 PMCid:PMC4545426
Li X, Mai J, Virtue A, Yin Y, Gong R, Sha X et al. (2012). IL-35 is a novel responsive anti-inflammatory cytokine - a new system of categorizing anti-inflammatory cytokines. PLoS One. 7(3): e33628. Epub 2012 Mar 16. https://doi.org/10.1371/journal.pone.0033628; PMid:22438968 PMCid:PMC3306427
Li Y, Chen J, Mu X, Wang X, Liu Y, Chen H et al. (2025). Dextran sodium sulfate-induced colitis-like gut permeability and dysbiosis in honeybees. Insect Sci. Epub ahead of print. https://doi.org/10.1111/1744-7917.13508; PMid:39963925
Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS, Funari V et al. (2019). Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. Cell Host Microbe. 25(3): 377-388.e6. Epub 2019 Mar 5. https://doi.org/10.1016/j.chom.2019.01.007; PMid:30850233 PMCid:PMC6417942
Liu C, Zhou J, Cheng X, Xia L, Zhou J, Xu S et al. (2019, Jan 20). Single-Chain Variable Fragment Antibody of Vascular Cell Adhesion Molecule 1 as a Molecular Imaging Probe for Colitis Model Rabbit Investigation. Contrast Media Mol Imaging. 2019: 2783519. https://doi.org/10.1155/2019/2783519; PMid:30804723 PMCid:PMC6360587
Lu S, Zhu K, Guo Y, Wang E, Huang J. (2021). Evaluation of animal models of Crohn's disease with anal fistula (Review). Exp Ther Med. 22(3): 974. Epub 2021 Jul 8. https://doi.org/10.3892/etm.2021.10406; PMid:34335916 PMCid:PMC8290422
Lu SS, Liu WJ, Niu QY, Huo CY, Cheng YQ, Wang EJ et al. (2022). Establishing a rabbit model of perianal fistulizing Crohn's disease. World J Gastroenterol. 28(15): 1536-1547. https://doi.org/10.3748/wjg.v28.i15.1536; PMid:35582134 PMCid:PMC9048459
Lukas M, Kolar M, Ryska O, Juhas S, Juhasova J, Kalvach J et al. (2021). A novel postgraduate endoscopic course using a large animal model of secondary Crohn's disease stricture. Surg Endosc. 35(6): 3199-3204. Epub 2021 Mar 4. https://doi.org/10.1007/s00464-021-08360-x; PMid:33661380
Lukas M. (2022). Porcine Model of Anastomotic Stricture in Crohn's Disease. Gastrointest Endosc Clin N Am. 32(4): 719-731. https://doi.org/10.1016/j.giec.2022.05.003; PMid:36202512
Luo R, Zhang J, Zhang X et al. (2020). Bacillus subtilis HH2 ameliorates TNBS-induced colitis by modulating gut microbiota composition and improving intestinal barrier function in rabbit model. J Funct Foods. 74: 104167. https://doi.org/10.1016/j.jff.2020.104167
Maldonado-Contreras A, Ferrer L, Cawley C, Crain S, Bhattarai S, Toscano J et al. (2020). Dysbiosis in a canine model of human fistulizing Crohn's disease. Gut Microbes. 12(1): 1785246. Epub 2020 Jul 30. https://doi.org/10.1080/19490976.2020.1785246; PMid:32730134 PMCid:PMC7524328
Marjoram L, Bagnat M. (2015). Infection, Inflammation and Healing in Zebrafish: Intestinal Inflammation. Curr Pathobiol Rep. 3(2): 147-153. https://doi.org/10.1007/s40139-015-0079-x; PMid:26236567 PMCid:PMC4520400
McLarren KW, Cole AE, Weisser SB, Voglmaier NS, Conlin VS, Jacobson K et al. (2011). SHIP-deficient mice develop spontaneous intestinal inflammation and arginase-dependent fibrosis. Am J Pathol. 179(1): 180-188. Epub 2011 May 7. https://doi.org/10.1016/j.ajpath.2011.03.018; PMid:21640975 PMCid:PMC3123870
Metwaly A, Haller D. (2024). The TNF∆ARE Model of Crohn's Disease-like Ileitis. Inflamm Bowel Dis. 30(1): 132-145. https://doi.org/10.1093/ibd/izad205; PMid:37756666
Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. (2019). Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clin Microbiol Rev. 32(2): e00060-18. https://doi.org/10.1128/CMR.00060-18; PMid:30700431 PMCid:PMC6431131
Mizoguchi A, Takeuchi T, Himuro H, Okada T, Mizoguchi E. (2016). Genetically engineered mouse models for studying inflammatory bowel disease. J Pathol. 238(2): 205-219. Epub 2015 Nov 14. https://doi.org/10.1002/path.4640; PMid:26387641 PMCid:PMC4689626
Nielsen TS, Fredborg M, Theil PK, Yue Y, Bruhn LV et al. (2020). Dietary Red Meat Adversely Affects Disease Severity in a Pig Model of DSS-Induced Colitis Despite Reduction in Colonic Pro-Inflammatory Gene Expression. Nutrients. 12(6): 1728. https://doi.org/10.3390/nu12061728; PMid:32526985 PMCid:PMC7353045
Novichkova E, Nayak S, Boussiba S, Gopas J, Zilberg D, Khozin-Goldberg I. (2023). Dietary Application of the Microalga Lobosphaera incisa P127 Reduces Severity of Intestinal Inflammation, Modulates Gut-Associated Gene Expression, and Microbiome in the Zebrafish Model of IBD. Mol Nutr Food Res. 67(6): e2200253. Epub 2023 Feb 7. https://doi.org/10.1002/mnfr.202200253; PMid:36683256
Obara K, Kawaguchi A, Inaba R, Kawakita M, Yamaguchi R, Yamashita H et al. (2021). Docosahexaenoic Acid and Eicosapentaenoic Acid Inhibit the Contractile Responses of the Guinea Pig Lower Gastrointestinal Tract. Biol Pharm Bull. 44(8): 1129-1139. https://doi.org/10.1248/bpb.b21-00362; PMid:34334498
Okuda KS, Misa JP, Oehlers SH, Hall CJ, Ellett F, Alasmari S et al. (2015). A zebrafish model of inflammatory lymphangiogenesis. Biol Open. 4(10): 1270-80. https://doi.org/10.1242/bio.013540; PMid:26369931 PMCid:PMC4610225
Peng N, Wang J, Zhu H, Liu Z, Ren J, Li W, Wang Y. (2024). Protective effect of carbon dots as antioxidants on intestinal inflammation by regulating oxidative stress and gut microbiota in nematodes and mouse models. Int Immunopharmacol. 131: 111871. Epub 2024 Mar 16. https://doi.org/10.1016/j.intimp.2024.111871; PMid:38492339
Polak EJ, O'Callaghan F, Oaten M. (2020). Perceptions of IBD within patient and community samples: a systematic review. Psychol Health. 35(4): 425-448. Epub 2019 Sep 20. https://doi.org/10.1080/08870446.2019.1662014; PMid:31538517
Prattis S, Jurjus A. (2015). Spontaneous and transgenic rodent models of inflammatory bowel disease. Lab Anim Res. 31(2): 47-68. Epub 2015 Jun 26. https://doi.org/10.5625/lar.2015.31.2.47; PMid:26155200 PMCid:PMC4490147
Pronina OM, Bilash SM, Ksyonz IV, Kobeniak MM, Pirog-Zakaznikova AV, Oliinichenko YaO et al. (2024). Morphological features of compensatory and reparative processes of the cecum in the long term of the experiment using polycaprolactone thread modified with L-arginine. Paediatric Surgery(Ukraine). 3(84): 58-63. https://doi.org/10.15574/PS.2024.3(84).5863; PMid:34502755
Ramesh G, Alvarez X, Borda JT, Aye PP, Lackner AA, Sestak K. (2005). Visualizing cytokine-secreting cells in situ in the rhesus macaque model of chronic gut inflammation. Clin Diagn Lab Immunol. 12(1): 192-197. https://doi.org/10.1128/CDLI.12.1.192-197.2005; PMid:15643006 PMCid:PMC540205
Rhoades N, Barr T, Hendrickson S, Prongay K, Haertel A, Gill L et al. (2019). Maturation of the infant rhesus macaque gut microbiome and its role in the development of diarrheal disease. Genome Biol. 20(1): 173. https://doi.org/10.1186/s13059-019-1789-x; PMid:31451108 PMCid:PMC6709555
Robinson AM, Miller S, Payne N, Boyd R, Sakkal S, Nurgali K. (2015). Neuroprotective Potential of Mesenchymal Stem Cell-Based Therapy in Acute Stages of TNBS-Induced Colitis in Guinea-Pigs. PLoS One. 10(9): e0139023. https://doi.org/10.1371/journal.pone.0139023; PMid:26397368 PMCid:PMC4580595
Roediger WEW. (2019). Causation of human ulcerative colitis: A lead from an animal model that mirrors human disease. JGH Open. 3(4): 277-280. https://doi.org/10.1002/jgh3.12212; PMid:31406919 PMCid:PMC6684511
Ryska O, Serclova Z, Mestak O, Matouskova E, Vesely P, Mrazova I. (2017). Local application of adipose-derived mesenchymal stem cells supports the healing of fistula: prospective randomised study on rat model of fistulising Crohn's disease. Scand J Gastroenterol. 52(5): 543-550. Epub 2017 Jan 24. https://doi.org/10.1080/00365521.2017.1281434; PMid:28116942
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA et al. (2023). Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res. 28(1): 47. https://doi.org/10.1186/s40001-023-01008-7; PMid:36707899 PMCid:PMC9881387
Saleh I, Zain H, Ibrahim H et al. (2021). The impacts of treatment with newly developed probiotic versus phaleria macrocarpa leaves extract on the histological features in immunocompromised New Zealand white rabbits. IOP Conf Ser: Earth Environ Sci. 761: 012096. https://doi.org/10.1088/1755-1315/761/1/012096
Sestak K, Merritt CK, Borda J, Saylor E, Schwamberger SR, Cogswell F et al. (2003). Infectious agent and immune response characteristics of chronic enterocolitis in captive rhesus macaques. Infect Immun. 71(7): 4079-86. https://doi.org/10.1128/IAI.71.7.4079-4086.2003; PMid:12819098 PMCid:PMC162015
Stavely R, Robinson AM, Miller S, Boyd R, Sakkal S, Nurgali K. (2015). Allogeneic guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis. Stem Cell Res Ther. 6: 263. https://doi.org/10.1186/s13287-015-0254-3; PMid:26718461 PMCid:PMC4697327
Takahashi N, Kitazawa C, Itani Y, Awaga Y, Hama A et al. (2020). Exploratory clinical characterization of experimentally-induced ulcerative colitis nonhuman primates. Heliyon. 6(1): e03178. https://doi.org/10.1016/j.heliyon.2020.e03178; PMid:31938753 PMCid:PMC6953712
Usman D, Abubakar MB, Ibrahim KG, Imam MU. (2024). Iron chelation and supplementation: A comparison in the management of inflammatory bowel disease using drosophila. Life Sci. 336: 122328. Epub 2023 Dec 5. https://doi.org/10.1016/j.lfs.2023.122328; PMid:38061132
Van Kruiningen HJ (2016). An Infectious Pig Model of Crohn's Disease. Inflamm Bowel Dis. 22(9): 2106-2111. https://doi.org/10.1097/MIB.0000000000000831; PMid:27542129
Wang J, Lv M, He L, Wang X, Lan Y, Chen J et al. (2021). Transcriptomic landscape of persistent diarrhoea in rhesus macaques and comparison with humans and mouse models with inflammatory bowel disease. Gene. 800: 145837. Epub 2021 Jul 16. https://doi.org/10.1016/j.gene.2021.145837; PMid:34274469
Wang XX, Zou HY, Cao YN, Zhang XM, Sun M, Tu PF et al. (2023). Radix Panacis quinquefolii Extract Ameliorates Inflammatory Bowel Disease through Inhibiting Inflammation. Chin J Integr Med. 29(9): 825-831. Epub 2022 Dec 17. https://doi.org/10.1007/s11655-022-3543-6; PMid:36527537
Wei M, Yu Q, Li E, Zhao Y, Sun C, Li H et al. (2024). Ace Deficiency Induces Intestinal Inflammation in Zebrafish. Int J Mol Sci. 25(11): 5598. https://doi.org/10.3390/ijms25115598; PMid:38891786 PMCid:PMC11172040
Wen C, Chen D, Zhong R, Peng X. (2024). Animal models of inflammatory bowel disease: category and evaluation indexes. Gastroenterol Rep (Oxf). 12: goae021. https://doi.org/10.1093/gastro/goae021; PMid:38634007 PMCid:PMC11021814
Wilk JL, Maginnis GM, Coleman K, Lewis A, Ogden B. (2008). Evaluation of the use of coconut to treat chronic diarrhea in rhesus macaques (Macaca mulatta). J Med Primatol. 37(6): 271-276. https://doi.org/10.1111/j.1600-0684.2008.00313.x; PMid:19017194
Winogrodzki T, Metwaly A, Grodziecki A, Liang W, Klinger B, Flisikowska T et al. (2023). TNF ΔARE Pigs: A Translational Crohn's Disease Model. J Crohns Colitis. 17(7): 1128-1138. https://doi.org/10.1093/ecco-jcc/jjad034; PMid:36821422 PMCid:PMC10320488
Wu YQ, Zou ZP, Zhou Y, Ye BC. (2024). Dual engineered bacteria improve inflammatory bowel disease in mice. Appl Microbiol Biotechnol. 108(1): 333. https://doi.org/10.1007/s00253-024-13163-w; PMid:38739270 PMCid:PMC11090975
Xiang Y, Wen H, Yu Y, Li M, Fu X, Huang S. (2020). Gut-on-chip: Recreating human intestine in vitro. J Tissue Eng. 11: 2041731420965318. https://doi.org/10.1177/2041731420965318; PMid:33282173 PMCid:PMC7682210
Xiu M, Wang Y, Yang D, Zhang X, Dai Y, Liu Y et al. (2022). Using Drosophila melanogaster as a suitable platform for drug discovery from natural products in inflammatory bowel disease. Front Pharmacol. 13: 1072715. https://doi.org/10.3389/fphar.2022.1072715; PMid:36545307 PMCid:PMC9760693
Xu K, Shimizu M, Murai C, Fujisawa M, Ito D, Saitoh N et al. (2022). Docosahexaenoic acid and eicosapentaenoic acid strongly inhibit prostanoid TP receptor-dependent contractions of guinea pig gastric fundus smooth muscle. Pharmacol Res Perspect. 10(3): e00952. https://doi.org/10.1002/prp2.952; PMid:35466586 PMCid:PMC9035583
Xu K, Shimizu M, Yamashita T, Fujiwara M, Oikawa S, Ou G et al. (2024). Inhibitory mechanisms of docosahexaenoic acid on carbachol-, angiotensin II-, and bradykinin-induced contractions in guinea pig gastric fundus smooth muscle. Sci Rep. 14(1): 11720. https://doi.org/10.1038/s41598-024-62578-y; PMid:38778154 PMCid:PMC11111694
Yang S, Fan Z, Li J, Wang X, Lan Y, Yue B et al. (2023). Assembly of novel microbial genomes from gut metagenomes of rhesus macaque (Macaca mulatta). Gut Microbes. 15(1): 2188848. https://doi.org/10.1080/19490976.2023.2188848; PMid:36922385 PMCid:PMC10026933
Yang S, Liu Y, Yang N, Lan Y, Lan W, Feng J et al. (2022). The gut microbiome and antibiotic resistome of chronic diarrhea rhesus macaques (Macaca mulatta) and its similarity to the human gut microbiome. Microbiome. 10(1): 29. https://doi.org/10.1186/s40168-021-01218-3; PMid:35139923 PMCid:PMC8827259
Ying MA, Sun R, Zhang J. (2018). Effect of vitamin D3 combined with vitamin C on intestinal permeability in Guinea pigs with colitis. Chin J Public Health. 34: 823-826.
Zeng C, Liu F, Huang Y, Liang Q, He X, Li L, Xie Y. (2024). Drosophila: An Important Model for Exploring the Pathways of Inflammatory Bowel Disease (IBD) in the Intestinal Tract. Int J Mol Sci. 25(23): 12742. https://doi.org/10.3390/ijms252312742; PMid:39684456 PMCid:PMC11641265
Zhao S, Xia J, Wu X, Zhang L, Wang P, Wang H et al. (2018). Deficiency in class III PI3-kinase confers postnatal lethality with IBD-like features in zebrafish. Nat Commun. 9(1): 2639. https://doi.org/10.1038/s41467-018-05105-8; PMid:29980668 PMCid:PMC6035235
Zhu Y, Johnson LA, Huang Z, Rubin JM, Yuan J, Lei H et al. (2018). Identifying intestinal fibrosis and inflammation by spectroscopic photoacoustic imaging: an animal study in vivo. Biomed Opt Express. 9(4): 1590-1600. https://doi.org/10.1364/BOE.9.001590; PMid:29675304 PMCid:PMC5905908
Zou D, Pei J, Lan J, Sang H, Chen H, Yuan H et al. (2020). A SNP of bacterial blc disturbs gut lysophospholipid homeostasis and induces inflammation through epithelial barrier disruption. EBioMedicine. 52: 102652. Epub 2020 Feb 12. https://doi.org/10.1016/j.ebiom.2020.102652; PMid:32058942 PMCid:PMC7026729
Zwolinska-Wcislo M, Krzysiek-Maczka G, Ptak-Belowska A, Karczewska E, Pajdo R, Sliwowski Z et al. (2011). Antibiotic treatment with ampicillin accelerates the healing of colonic damage impaired by aspirin and coxib in the experimental colitis. Importance of intestinal bacteria, colonic microcirculation and proinflammatory cytokines. J Physiol Pharmacol. 62(3): 357-368. PMID: 21893697.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Paediatric Surgery (Ukraine)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The policy of the Journal “PAEDIATRIC SURGERY. UKRAINE” is compatible with the vast majority of funders' of open access and self-archiving policies. The journal provides immediate open access route being convinced that everyone – not only scientists - can benefit from research results, and publishes articles exclusively under open access distribution, with a Creative Commons Attribution-Noncommercial 4.0 international license(СС BY-NC).
Authors transfer the copyright to the Journal “PAEDIATRIC SURGERY.UKRAINE” when the manuscript is accepted for publication. Authors declare that this manuscript has not been published nor is under simultaneous consideration for publication elsewhere. After publication, the articles become freely available on-line to the public.
Readers have the right to use, distribute, and reproduce articles in any medium, provided the articles and the journal are properly cited.
The use of published materials for commercial purposes is strongly prohibited.