The morphopathological particuliarities of intrinsic innervation of the esophagus in newborns with esophageal atresia and inferior tracheoesophageal fistula
DOI:
https://doi.org/10.15574/PS.2019.63.10Keywords:
Esophageal atresia, tracheoesophageal fistula, morphology, imunohistochemie, neuronal disordies, dismotilityAbstract
The authors present the results of a morphological study of the biological samples from patients treated with the inferior esophageal atresia with tracheoesophageal fistula, which included immunohistochemical examination of neuronal changes in the esophageal wall, predominantly in the anomalous segment, with the need surgical involvement. The results obtained in the control group shows that the period of 36–37 weeks of gestation there is persisting glial cell component. The attested features are characteristic for the morpho-functional transition period from prematurity to maturity, being a specific neuronal cytology of the norm in the course of maturation of the child. Congenital morphopathological modifications of intramural ganglio-neural structures determined in both esophageal segments in cases of esophageal atresia with inferior tracheoesophageal fistula, concomitant with fibromuscular dysplasia, may be considered as factors with significant impact on esophageal motility regulation in children with esophageal atresia with tracheoesophageal fistula, and explains within certain limits their role in esophageal dismotility found postoperatively in this group of children.References
Aggarwal V, Bakshi ST, Mishra S. (2018). Expression of neuronspecific enolase and S-100 in the ileum and ileocecal junction in the human fetuses at various gestational ages. MAMC J. Med. Sci. 4: 75-81. https://doi.org/10.4103/mamcjms.mamcjms_16_18
Aspiro A., Faure C. (2013). Esophageal dysmotility: characterization and pathophysiology. Dis. Esophagus. 26(4): 405-9. https://doi.org/10.1111/dote.12058; PMid:23679032
Babuci S, Petrovici V, Negru I, Haidarli D. (2018). Histopathological characteristic of atretic segments in esophageal atresia with distal eso-traheal fistula. Mold. J. Pediatr. Surg. 3: 19-27. https://doi.org/10.1007/s00268-007-9070-y; PMid:17534555
Boleken M, Demirbilek S, Kirimiloglu H, Kanmaz T, Yucesan S et al. (2007). Reduced neuronal innervations in the distal end o the proximal esophageal atretic segment in cases of esophageal atresia with distal tracheoesophageal fistula. World J. Surg. 31(7): 1512-7. https://doi.org/10.1007/s003830050500; PMid:9914345
Cheng W, Bisho AE, Spitz L, Polak JM. (1999). Abnprmal enteric nerve morphology in atretic esophagus of fetal rats with adriamycin-induced esophageal atresia. Pediatr. Surg. Int. 15(1): 8-10. https://doi.org/10.1016/j.jpedsurg.2004.06.027; PMid:15486912
Cheng W, Poon KH, Lui VCH, Yong JL, Law S et al. (2004). Esophageal atresia and achalasialike esophageal dysmotility. J. Pediatr. Surg. 39: 1581-3. https://doi.org/10.1016/j.jpedsurg.2004.06.027; PMid:15486912
Dutta HK, Mathur M, Bhatnagar V. (2000). A histopathological study of esophageal atresia and tracheoesophageal fistula. Pediatr. Surg. 35: 438-41. https://doi.org/10.1016/S0022-3468(00)90209-4
Dzienis-Koronkiewicz E, Debek W, Chyczewski L. (2005). Use of synaptophysin immunohistochemistry in intestinal motility disorders. Eur. J. Pediatr. Surg. 15(6): 392-8. https://doi.org/10.1055/s-2005-872949; PMid:16418955
Faure C, Grunder FR. (2017). Dysmotility in esophageal atresia: pathophysiology, characterization, and treatment. Front. Paediatr. 5: 130. https://doi.org/10.3389/fped.2017.00130; PMid:28620599 PMCid:PMC5450509
Gottrand M, Michaud L, Sfeir R, Gottrand F. (2016). Motility, digestive and nutritional problems in esophageal atresia. Paeiatr. Resp. Rev. 19: 28-33. https://doi.org/10.1016/j.prrv.2015.11.005; PMid:26752295
Gudi V, Gai L, Herder V, Tejedor LS, Kipp M et al. (2017). Synaptophysin is a reliable marker for axonal damage. J. Neuropathol. Exp. Neurol. 76(2): 109-25. https://doi.org/10.1093/jnen/nlw114; PMid:28177496
Gut P, Czarnywojtek A, Fischbach J, Baczyk M, Ziemnicka K et al. (2016). Chromogranin A – unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch. Med. Sci. 12(1): 1-9. https://doi.org/10.5114/aoms.2016.57577; PMid:26925113 PMCid:PMC4754364
Isgro MA, Bottoni P, Scatena R. (2015). Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Adv. Exp. Med. Biol. 867: 125-43. https://doi.org/10.1007/978-94-017-7215-0_9; PMid:26530364
Kawahara H, Oue T, Okuyama H. (2003). Esophageal motor function in congenital esophageal stenosis. J. Pediatr. Surg. 38: 1716-9. https://doi.org/10.1016/j.jpedsurg.2003.08.020; PMid:14666450
Li GL, Farooque M, Isaksson J, Olsson Y. (2004). Changes in synapses and axons demonstrated by synaptophysin immunohistochemistry following spinal cord compression trauma in the rat and mouse. Biomed. Envir. Sci. 17: 281-90.
Li K, Zheng S, Xiao X, Wang Q, Zhou Y, Chen L. (2007). The structural characteristics and expression of neuropeptides in the esophagus of patients with congenital esophageal atresia and tracheoesophageal fistula. Pediatr. Surg. 42(8): 1433-8. https://doi.org/10.1016/j.jpedsurg.2007.03.050; PMid:17706510
Liu Q, Xie F, Siedlak SL, Nunomura A, Honda K et al. (2004). Neurofilament proteins in neurodegenerative. CMLS, Cell. Mol. Life Sci. 61: 3057-75. https://doi.org/10.1007/s00018-004-4268-8; PMid:15583867
Mahoney L, Rosen R. (2016). Feeding difficulties in children with esophageal atresia. Paediatr. Resp. Rev. 19: 21-7. https://doi.org/10.1016/j.prrv.2015.06.002; PMid:26164203 PMCid:PMC4690793
Midrio P, Alaggio R, Strojna A, Gamba P, Giacomelli L et al. (2010). Reduction of interstitial cells of Cajal in esophageal atresia. J. Pediatr. Gastroenterol. Nutr. 51(5): 610-7. https://doi.org/10.1097/MPG.0b013e3181dd9d40; PMid:20706152
Mukhopadhyay AK, Weisbodt NW. (1975). Neural organization of esophageal peristalsis: role of vagus nerve. Gastroenterol. 68(3): 444-7.
Pederiva F, Burgos E, Francica I, Zuccarello B, Martinez L, Tovar JA. (2008). Intrinsic esophageal innervations in esophageal atresia without fistula. Pediatr. Surg. Int. 24(1): 95-100. https://doi.org/10.1007/s00383-007-2032-5; PMid:17962964
Preiksaitis HG, Diamant NE. (1999). Myogenic mechanism for peristalsis in the cat. Am. J. Physiol. 277(2): G306-13. https://doi.org/10.1152/ajpgi.1999.277.2.G306; PMid:10444444
Qi BQ, Uemura S, Farmer P, Myers NA, Hutson JM. (1999). Intrinsic innervations of the oesophagus in fetal rats with oesophageal atresia. Pediatr. Surg. Int. 15(1): 2-7. https://doi.org/10.1007/s003830050499; PMid:9914344
Rayyan M, Allegaert K, Omari T, Rommel N. (2015). Dysphagia in children with esophageal atresia: current diagnostic options. Eur. J. Pediatr. Surg. 25(4): 326-32. https://doi.org/10.1055/s-0035-1559818; PMid:26309245
Sarna SK, Daniel EE, Waterfall WE. (1977). Myogenic and neural control systems for esophageal motility. Gastroenterology. 73: 1345-52. https://doi.org/10.1016/S0016-5085(19)31512-4
Sistonen SJ, Koivusalo A, Lindahl H, Pukkala E, Rintala RJ, Pakarinen MP. (2008). Cancer after repair of esophageal atresia: population-based long-term follow-up. J. Pediatr. Surg. 43: 602-5. https://doi.org/10.1016/j.jpedsurg.2007.12.002; PMid:18405703
Van der Zee DC, Tytgat SHA, Herwaarden MYA. (2017). Esophageal atresia and tracheo-esophageal fistula. Semin. Pediatr. Surg. 26: 67-71. https://doi.org/10.1053/j.sempedsurg.2017.02.004; PMid:28550873
Vergouwe FWT, Jsselstijn HI, Biermann K et al. (2018). High prevalence of Barrett’s esophagus and esophageal squamous cell carcinoma after repair of esophageal atresia. Clin. Gastroenterol. Hepatol. 16: 513-21. https://doi.org/10.1016/j.cgh.2017.11.008; PMid:29133255
Yalcin S, Demir N, Serel S, Soyer T, Cahit Tanyel F. (2015). The evaluation of deglutition with videofluoroscopy after repair of esophageal atresia and/or tracheoesophageal fistula. J. Pediatr. Surg. 50: 1823-7. https://doi.org/10.1016/j.jpedsurg.2015.07.002; PMid:26210818
Zuccarello B, Spada A, Turiaco N, Villari D, Parisi S et al. (2009). Intramural ganglion structures in esophageal atresia: A morphologic and immunohistochemical study. HPC. Int. J. Pediatr. 2009. Article ID 695837. https://doi.org/10.1155/2009/695837; PMid:20041008 PMCid:PMC2778171.
Downloads
Issue
Section
License
The policy of the Journal “PAEDIATRIC SURGERY. UKRAINE” is compatible with the vast majority of funders' of open access and self-archiving policies. The journal provides immediate open access route being convinced that everyone – not only scientists - can benefit from research results, and publishes articles exclusively under open access distribution, with a Creative Commons Attribution-Noncommercial 4.0 international license(СС BY-NC).
Authors transfer the copyright to the Journal “PAEDIATRIC SURGERY.UKRAINE” when the manuscript is accepted for publication. Authors declare that this manuscript has not been published nor is under simultaneous consideration for publication elsewhere. After publication, the articles become freely available on-line to the public.
Readers have the right to use, distribute, and reproduce articles in any medium, provided the articles and the journal are properly cited.
The use of published materials for commercial purposes is strongly prohibited.